Hydrogen: a critical brick for aviation sustainable future

Aviation net zero emissions target

The "Net Zero Target in 2050" is aligned with the objectives of the Paris agreement to limit global warming to 1.5°C.

States and Aviation industry are aligned on the same target.

2 SAFRAN 2023

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Aviation net zero emissions target

- SAF (Sustainable Aviation Fuels) play a major role in this decarbonization journey
- Bio-based SAF are <u>mature</u> and <u>technically compatible</u> with current and future fleets. They have to be developed immediately and massively
- Nevertheless, bioSAF will probably not cover the future energetical needs of aviation, due to biomass availability and strong competition between sectors.
- Hydrogen-based solutions will be key for aviation sustainable future

Hydrogen is key for Aviation sustainable future... ... but under several forms

4 SAFRAN 2023

SAFRAN

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Hydrogen is key for Aviation sustainable future... ... but under several forms

	« component » for bioSAF production	Combined with CO ₂ in eFuels / PtL	Under LH ₂ form (Fuel cell / H ₂ combustion)
Technical maturity	++ to +++ (variable according to pathway)	++	+
Compatibility with current fleet	+++ (100% SAF compatibility before 2030)	+++ (100%SAF compatibility before 2030)	0
Type of application	All segments	All segments	Regional Increasing to SMR
Cost	High Link to biomass type	Very high (high CAPEX, high OPEX (electricity + CO ₂)	High but decreasing
Infrastructure	Compatible with current aircrafts and infrastructure	Compatible with current aircrafts and infrastructure	New aircrafts / New infrastructure

Main take-away

- Hydrogen technologies have to be developped
- Safran considering development of all of these pathways (BioSAF, eSAF, Fuel cell and H₂ combustion), in collaboration with relevant stakeholders
- Several complementary pathways, each one having specific potential, but also limits and bottlenecks
- A global alignment of the full ecosystem will be compulsory for the successful deployment of these technologies

