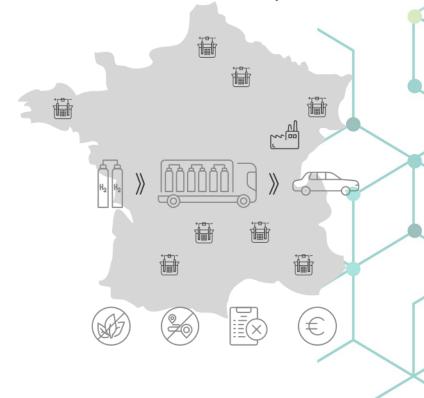


24 - 28 October 2022 Brussels, Belgium

euhydrogenweek.eu


Hydrogen (H₂) is a key element in the energy transition...

" H₂ could meet up to 24% of the world's energy needs by 2050 »

(Bloomberg NEF 28.5.2020)

... but its logistics remain complex and expensive

H₂ transportation is limited to small distances and little quantities

Current transportation and storage methods

Transporting H₂ in gaseous state by compressing it.

- Difficult to handle (200-700 bars pressure)
- Small quantitly of H₂ transported
- Difficult for big volumes

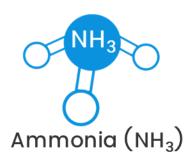
24-28 October 2022 · Brussels, Belgium

Difficult for long distances

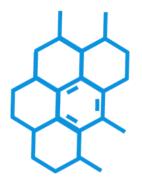
Compressed gas

Transporting H₂ in gaseous state by pipelines.

- H₂'s lightness → greater leakage rate
- Possibility of H₂ embrittlement
- Not adapted for long distances


Considered transportation and storage methods

Transporting H₂ in liquid state at very low temperature.


- Infrastructures not deployed
- Need of keeping a constant temperature (-253°C)
- Energy intensive for liquefaction
- Boil-off (H₂ losses over time)

Transporting H₂ combined with nitrogen.

- Toxic
- Unconceivable for downtown usages
- Need of specialised staff
- H₂ losses when unloading
- Not linked to H₂ transport yet

New transportation and storage methods

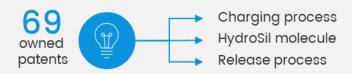
Transporting H₂ in an organic hydrogen carrier.

- Organic: carbon-based
- Aged carrier with time: oxidized
- Need of energy input for releasing H₂ from it
- Need of H₂ purification after release
- Costly raw material

Transporting H₂ in a unique, non-organic hydrogen carrier.

- ✓ Liquid, stable, safe
- Earth friendly
- ✓ No energy needed to release H₂
- ✓ Non-organic molecule
- Use of conventional infrastructures

HSL solutions™ to easily store & transport H₂


HySiLabs has developed two innovative chemical processes to charge and release H₂ in and out of the carrier.

Industrial processes to load the carrier with H₂ and energy

Same logistics as conventional liquid fuels

H₂ is released from HydroSil on demand without energy

The only one in the world in liquid state with a non-organic basis


HySiLabs | The enabler of zero emission massive H2 logistics

Vision

A H₂ economy for a zero-carbon future.

Mission

Enabling massive H₂ logistics with a safe and cost-competitive solution.

UNION EUROPÉENNE Fonds Européen de Développement Régional

Projet cofinancé par React-EU - Dispositif de relance de l'Union européenne en réponse à la pandémie de COVID-19

Purpose and applications

A 74B€ market in 2030

Among all the H₂ usages, HSL Solutions are unbeatable on these three

Green H₂ transportation and H₂ hubs

- Building a pilot near a H₂ hub
- Total addressable market: 26% of the total H₂ market in 2030 (IEA green H₂ project database; end-use sectors of non-captive H₂)

Ports

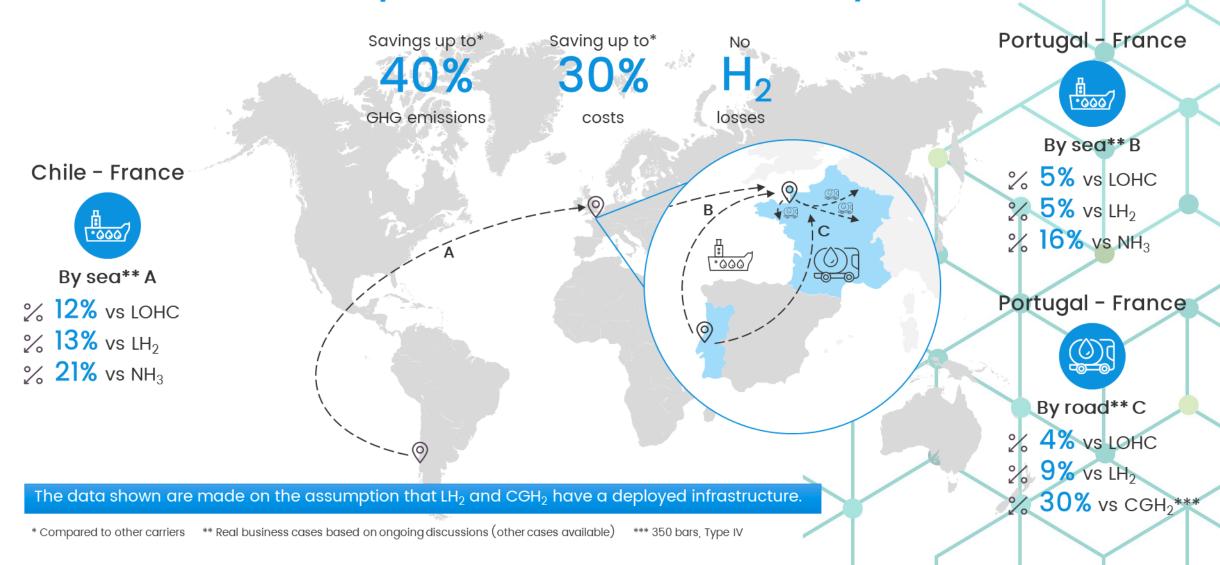
Heavy duty on-board applications

- Building a pilot to feed the demand
- Total addressable market: 32% of the total H₂ market in 2030 (IEA green H_2 project database; end-use sectors of non-captive H_2)

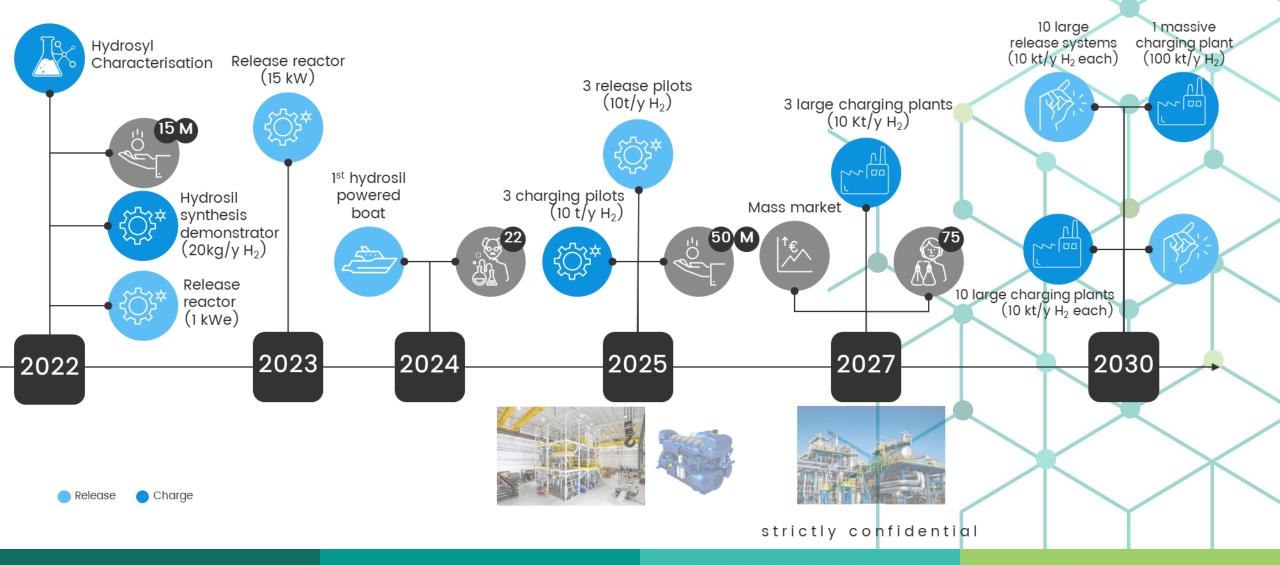
Ship-owners **Dockyards**

Strategic storage

- Building a pilot with key partners from the sector
- Total addressable market: 1% of the total H₂ market in 2030 (IEA green H₂ project database; end-use sectors of non-captive H₂)



Cavern storage


Stockists

A cost competitive solution for any use case

European Hydrogen Week

Our industrial roadmap

Large charging plants | A 2027 ambition

5 industrial charging plants

Enough H₂ for refuelling:

- 250 000 x
- 16 500 x
- 5 500 x
- 2 000 x
- 200 x
- Industrial charging plant:
- 200M€ infrastructure
- 10 kTpa H₂ charged
- Construction: between 2025-2029
- Coupled to H₂ production

strictly confidential

European Hydrogen Week

Executive summary

HySiLabs has conceived the 1st way to transport and store H₂ as any conventional liquid, using the existing infrastructures and with a zero-carbon basis.

By enabling massive H₂ logistics, a new way of conceiving long distance transportation for the molecule is possible.

HSL Solutions' USP: liquid state at standard conditions, carbon free, use of conventional liquid infrastructures, no energy input for releasing the H₂, suitable for on-board maritime applications.

HySiLabs provides H₂ to consumers together with partners of the value chain via Hydrogen Stored as Liquids solutions.

After proving the concept at large scale, HySiLabs is ready to go onestep further and industrialise its process thanks to a 15M€ fundraising.

Scalability will guide HySiLabs to make revenues starting 2025, to access the mass market in 2027 and to break even in 2030.

Enabling massive hydrogen logistics for all kind of applications

hysilabs.com

Bâtiment Lavoisier, Avenue Louis Philibert, 13100 Aix-en-Provence (France)

V52022

